Department of Pesticide Regulation Gavin Newsom Governor Jared Blumenfeld Secretary for Environmental Protection #### MEMORANDUM TO: Karen Morrison Acting Chief Deputy Director Pesticide Programs Division VIA: Reevaluation Program Pesticide Reevaluation Branch FROM: Ecotoxicology Program Pesticide Evaluation Branch DATE: February 1, 2022 SUBJECT: UPDATE TO THE IDENTIFICATION OF CROP RESIDUE STUDIES FOR DEVELOPMENT OF PROPOSED POLLINATOR PROTECTION REGULATIONS IN RESPONSE TO THE NEONICOTINOID REEVALUATION As a part of the Department of Pesticide Regulation's (DPR) neonicotinoid reevaluation, the Director imposed several data requirements including the collection of residue data on representative commodities grown in California. Companies submitted data to fulfill those data requirements. In addition, DPR received data required by U.S. Environmental Protection Agency (U.S. EPA) and voluntary studies submitted by companies. DPR has assessed the data as a whole and has developed proposed regulations, in response to the neonicotinoid reevaluation with the intent to protect pollinator health. This memo serves as an update and supersedes the previous memo titled "Identification of Crop Residue Studies for Development of Draft Proposed Pollinator Protection Regulations in Response to the Neonicotinoid Reevaluation," dated September 28, 2020. This memo contains three appendices that identify the following: (1) neonicotinoid crop residue studies DPR is currently using to support the application rates and timing restrictions contained in the proposed regulations, (2) neonicotinoid crop residue studies DPR received for purposes of the neonicotinoid reevaluation, and (3) additional information on the residue studies that DPR found acceptable. This information is presented in **APPENDIX 1** through **3**. cc: Tulio Macedo, Chief, Pesticide Registration Branch Jill Townzen, Chief, Pesticide Evaluation Branch # APPENDIX 1. Identification of Residue Studies by Crop Group that DPR Is Using to Support the Application Rates and Timing Restrictions Contained in the Proposed Regulations. For the crop groups for which DPR had acceptable data on file, **Tables 1-11** identify the crop residue studies that DPR is currently relying upon to support the application rate and timing restrictions in the proposed regulations. Report Number refers to a registrant-generated identification number assigned to the study. The specified application rates in the tables are in units of pounds of active ingredient (ai) per acre (A) per growing season (lbs. ai/A/season). DPR currently does not have data on file for the following crop groups and miscellaneous crops: bulb vegetable crop group, herb and spices crop group, vegetables including brassica (cole) crop group, tropical and subtropical fruit (edible and inedible peel) crop groups, coffee, peanuts, globe artichoke, hops, mint, or tobacco. **Table 1.** Identification of studies to support proposed application rate and timing restriction for **Grapes**, within the Berries and Small Fruits Crop Groups. | Active | Soil Ap | plication | Foliar Applicat | ion | |--------------|-------------------------------|------------------|--|------------------| | Ingredient | Application Rate/Timing | Report
Number | Application Rate/Timing | Report
Number | | | 0.2 lbs.
ai/A/season | Clothianidin | 0.1 lbs.
ai/A/season | Clothianidin | | Clothianidin | Apply only up until bud break | VP-38992 | Apply only between post-
bloom (all flower hoods
fallen) and harvest | VP-38992 | | | 0.2 lbs.
ai/A/season | Bridged to | 0.1 lbs.
ai/A/season | Bridged to | | Dinotefuran | Apply only up until bud break | VP-38992 | Apply only between post-
bloom (all flower hoods
fallen) and harvest | VP-38992 | | | 0.2 lbs.
ai/A/season | Bridged to | 0.1 lbs.
ai/A/season | Bridged to | | Imidacloprid | Apply only up until bud break | VP-38992 | Apply only between post-
bloom (all flower hoods
fallen) and harvest | VP-38992 | | | 0.2 lbs.
ai/A/season | Bridged to | 0.1 lbs.
ai/A/season | Bridged to | | Thiamethoxam | Apply only up until bud break | VP-38992 | Apply only between post-
bloom (all flower hoods
fallen) and harvest | VP-38992 | **Table 2.** Identification of studies to support proposed application rate and timing restriction for the **Cereal Grains** Crop Groups. | Active | Soil Application | | Foliar Applic | eation | |--------------|--|---|---|---------------------------| | Ingredient | Application
Rate/Timing | Report
Number | Application
Rate/Timing | Report Number | | | 0.2 lbs.
ai/A/season | Clothianidin | 0.126 lbs. ai/A/season | | | Clothianidin | Apply only at pre-planting or planting | VP-39071,
VP-39234,
VP-39240,
VP-39442 | Apply only between pre-planting until heading (inflorescence or tassel emergence) | Bridged to
TK0258214 | | | 0.2 lbs.
ai/A/season | Bridged to | 0.126 lbs. ai/A/season | | | Dinotefuran | Apply only at pre-planting or planting | VP-39071,
VP-39234,
VP-39240,
VP-39442 | Apply only between pre-planting until heading (inflorescence or tassel emergence) | Bridged to
TK0258214 | | | 0.2 lbs.
ai/A/season | Bridged to | 0.126 lbs. ai/A/season | | | Imidacloprid | Apply only at pre-planting or planting | VP-39071,
VP-39234,
VP-39240,
VP-39442 | Apply only between pre-planting until heading (inflorescence or tassel emergence) | Bridged to
TK0258214 | | Thiamethoxam | 0.2 lbs.
ai/A/season | Bridged to | 0.126 lbs. ai/A/season | | | | Apply only at pre-planting or planting | VP-39071,
VP-39234,
VP-39240,
VP-39442 | Apply only between pre-planting until heading (inflorescence or tassel emergence) | Thiamethoxam
TK0258214 | **Table 3.** Identification of studies to support proposed application rate and timing restriction for the **Citrus Fruit** Crop Groups. | the Citrus Fruit Crop Groups. | | | | | |-------------------------------|--|---------------------------------------|---|---------------------------| | Active | Soil Ap | plication | Foliar Appl | ication | | Ingredient | Application Rate/Timing | Report Number | Application Rate/Timing | Report Number | | | 0.2 lbs.
ai/A/season
Apply only | Clothianidin | 0.172 lbs.
ai/A/season | Bridged to | | Clothianidin | between petal
fall and
September 17 | VP-38685,
VP-38980 | Apply only between petal fall and November 20 | TK0250069 | | | 0.172 lbs.
ai/A/season | Bridged to | 0.172 lbs.
ai/A/season | | | Dinotefuran | Apply only
between petal
fall and
February 10 | TK0124743,
TK0124745,
TK0177221 | Apply only between petal fall and November 20 | Bridged to
TK0250069 | | | 0.25 lbs.
ai/A/season | | 0.172 lbs.
ai/A/season | | | Imidacloprid | Apply only
between petal
fall and
December 6 | Imidacloprid
EBTNL056-7 | Apply only between petal fall and November 20 | Bridged to
TK0250069 | | Thiamethoxam | 0.172 lbs.
ai/A/season | Thiamethoxam | 0.172 lbs.
ai/A/season | | | | Apply only
between petal
fall and
February 10 | TK0124743,
TK0124745,
TK0177221 | Apply only between petal fall and November 20 | Thiamethoxam
TK0250069 | Table 4. Identification of studies to support proposed application rate and timing restriction for the Cucurbit Vegetables Crop Group | Active | Soil App | | Foliar App | lication | |--------------|---|---|--|---------------------------------------| | Ingredient | Application
Rate/Timing | Report Number | Application
Rate/Timing | Report Number | | | 0.2 lbs.
ai/A/season | Clothianidin | 0.2 lbs. ai/A/season | | | Clothianidin | Apply only from pre-planting until primary side shoot formation | VP-38263,
VP-38938,
VP-38971 | Apply only from pre-planting until bloom | Clothianidin
VP-38313,
VP-38971 | | Dinotefuran | 0.536 lbs.
ai/A/season | Dinotefuran
10934.4104 | 0.172 lbs.
ai/A/season
Apply only from | Bridged to
TK0242074 | | | None | 10/34.4104 | pre-planting until bloom | 110212071 | | | 0.172 lbs.
ai/A/season | | 0.172 lbs.
ai/A/season | | | Imidacloprid | Apply only from pre- planting until fifth true leaf on main stem unfolded | Bridged to
TK0222530,
TK0024668 | Apply only from pre-planting until bloom | Bridged to
TK0242074 | | | 0.172 lbs.
ai/A/season | | 0.172 lbs.
ai/A/season | | | Thiamethoxam | Apply only from pre- planting until fifth true leaf on main stem unfolded | Thiamethoxam
TK0222530,
TK0024668 | Apply only from pre-planting until bloom | Thiamethoxam
TK0242074 | ## Exceptions: The bloom exception for dinotefuran as a soil application is based on study report 10934.4104. The exceptions for cucumbers are based on study report TK0222532. The exception for melon is based on study report VP-39242. Table 5. Identification of studies to support proposed application rate and timing restriction for the Fruiting Vegetables Crop Groups | Active | Soil Applica | ition | Foliar A | Foliar Application | | |--------------|--|---------------------------|-------------------------|----------------------------|--| | Ingredient | Application
Rate/Timing | Report Number | Application Rate/Timing | Report Number | | | Clothianidin | 0.172 lbs. ai/A/season Apply only from preplanting until third leaf on main shoot unfolded | Bridged to
TK0242072 | Prohibited | Bridged to
TK0222531 | | |
Dinotefuran | 0.172 lbs. ai/A/season Apply only from preplanting until third leaf on main shoot unfolded | Bridged to
TK0242072 | Prohibited | Dinotefuran
10934.4103 | | | Imidacloprid | 0.172 lbs. ai/A/season Apply only from preplanting until third leaf on main shoot unfolded | Bridged to
TK0242072 | Prohibited | Bridged to
TK0222531 | | | Thiamethoxam | 0.172 lbs. ai/A/season Apply only from preplanting until third leaf on main shoot unfolded | Thiamethoxam
TK0242072 | Prohibited | Thiamethoxam,
TK0222531 | | The exceptions for the nectar-producing fruiting vegetables, peppers, goji berry, ground cherry, martynia, okra, roselle, or tomatillo are based on study report TK0236306. **Table 6.** Identification of studies to support proposed application rate and timing restriction for the **Legume Vegetable** Crop Group | Active | Soil Applic | ation | Foliar Application | | |--------------|----------------------------|------------------|--|-------------------------| | Ingredient | Application
Rate/Timing | Report
Number | Application
Rate/Timing | Report Number | | Clothianidin | Prohibited | No data | Prohibited | Bridged to
TK0250070 | | Dinotefuran | Prohibited | No data | 0.126 lbs. ai/A/season Apply only from preplanting until bloom | Bridged to
TK0250070 | | Imidacloprid | Prohibited | No data | Prohibited | Bridged to
TK0250070 | | Thiamethoxam | Prohibited | No data | Prohibited | Thiamethoxam TK0250070 | **Table 7.** Identification of studies to support proposed application rate and timing restriction for the **Oilseed** Crop Group | Active | Soil Application | | Foliar Application | | |--------------|-------------------------|---------------------------|---|---------------------------------------| | Ingredient | Application Rate/Timing | Report Number | Application
Rate/Timing | Report Number | | Clothianidin | Prohibited | No data | Prohibited | Clothianidin
VP-38259,
VP-39066 | | Dinotefuran | Prohibited | No data | Prohibited | Dinotefuran
43411B104 | | Imidacloprid | Prohibited | Imidacloprid,
EBNTN011 | 0.3 lbs. ai/A/season Apply only from pre-planting until bloom | Imidacloprid
EBNTY010 | | Thiamethoxam | Prohibited | No data | Prohibited | Thiamethoxam TK0177223 | **Table 8.** Identification of studies to support proposed application rate and timing restriction for the **Pome Fruits** Crop Groups | Active | Soil Applica | ation | Foliar Application | | |--------------|---|--------------------------|--|--------------------------| | Ingredient | Application
Rate/Timing | Report
Number | Application
Rate/Timing | Report
Number | | Clothianidin | 0.38 lbs. ai/A/season Apply only between post-bloom and harvest | Bridged to
EBNTN014 | 0.187 lbs. ai/A/season Apply only between post-bloom and harvest | Clothianidin
VP-38552 | | Dinotefuran | 0.38 lbs. ai/A/season Apply only between post-bloom and harvest | Bridged to
EBNTN014 | 0.187 lbs. ai/A/season Apply only between post-bloom and harvest | Bridged to
VP-38552 | | Imidacloprid | 0.38 lbs. ai/A/season Apply only between post-bloom and harvest | Imidacloprid
EBNTN014 | 0.187 lbs. ai/A/season Apply only between post-bloom and harvest | Bridged to
VP-38552 | | Thiamethoxam | 0.38 lbs. ai/A/season Apply only between post-bloom and harvest | Bridged to
EBNTN014 | 0.187 lbs. ai/A/season Apply only between post-bloom and harvest | Bridged to
VP-38552 | **Table 9.** Identification of studies to support proposed application rate and timing restriction for the **Root and Tuber Vegetables** Crop Groups | Active | Soil Applicat | | Foliar App | lication | | |--------------|--|------------------|--|------------------------|--| | Ingredient | Application
Rate/Timing | Report
Number | Application
Rate/Timing | Report
Number | | | | 0.2 lbs. ai/A/season | Clothianidin | 0.05 lbs.
ai/A/season | Clothianidin | | | Clothianidin | Apply only at pre-
planting or planting | VP-38985 | Apply only from pre-planting until bloom | VP-38985 | | | | 0.338 lbs. ai/A/season | Dinotefuran | 0.05 lbs.
ai/A/season | Bridged to
VP-38985 | | | Dinotefuran | Apply only from pre-
planting until the
beginning of main stem
elongation or crop cover | 10934.41 | Apply only from pre-planting until bloom | | | | | 0.2 lbs. ai/A/season | Bridged to | 0.05 lbs.
ai/A/season | Bridged to | | | Imidacloprid | Imidacloprid Apply only at preplanting or planting Bridged to VP-38985 | | Apply only from pre-planting until bloom | VP-38985 | | | Thiamethoxam | 0.2 lbs. ai/A/season | Bridged to | 0.05 lbs.
ai/A/season | Bridged to | | | | Apply only at pre-
planting or planting | VP-38985 | Apply only from pre-planting until bloom | VP-38985 | | **Table 10.** Identification of studies to support proposed application rate and timing restriction for the **Stone Fruits** Crop Groups | the Stone Fruits Crop Groups | | | | | |------------------------------|---|---|---|---------------------------| | Active | Soil Appli | cation | Foliar Ap | plication | | Ingredient | Application Rate/Timing | Report
Number | Application
Rate/Timing | Report Number | | | 0.38 lbs.
ai/A/season | | 0.2 lbs.
ai/A/season | | | Clothianidin | Clothianidin Apply only between post- bloom and harvest Bridged to EBNTN013 | Apply only
between post-
bloom and
harvest | Clothianidin
VP-38563 | | | | 0.38 lbs.
ai/A/season | | 0.54 lbs.
ai/A/season | | | Dinotefuran | Apply only
between post-
bloom and harvest | Bridged to
EBNTN013 | Apply only between post-bloom and harvest | Dinotefuran
10934.4105 | | | 0.38 lbs.
ai/A/season | | 0.5 lbs.
ai/A/season | | | Imidacloprid | Apply only
between post-
bloom and harvest | Imidacloprid
EBNTN013 | Apply only between post-bloom and harvest | Imidacloprid
EBNTY008 | | Thiamethoxam | 0.38 lbs.
ai/A/season | | 0.172 lbs.
ai/A/season | | | | Apply only
between post-
bloom and harvest | Bridged to
EBNTN013 | Apply only between post-bloom and harvest | Thiamethoxam
TK0177222 | Table 11. Identification of studies to support proposed application rate and timing restriction for the Tree Nuts Crop Groups | Active | Soil Application | | Foliar Application | | |--------------|----------------------------|------------------|---|--------------------------| | Ingredient | Application
Rate/Timing | Report
Number | Application Rate/Timing | Report
Number | | Clothianidin | Prohibited | No data | 0.2 lbs. ai/A/season Apply only between postbloom and harvest | Clothianidin
VP-38473 | | Dinotefuran | Prohibited | No data | 0.2 lbs. ai/A/season Apply only between post- bloom and harvest | Bridged to
VP-38473 | | Imidacloprid | Prohibited | No data | 0.2 lbs. ai/A/season Apply only between post- bloom and harvest | Bridged to
VP-38473 | | Thiamethoxam | Prohibited | No data | 0.2 lbs. ai/A/season Apply only between post-bloom and harvest | Bridged to
VP-38473 | APPENDIX 2. List of all neonicotinoid crop residues studies that were submitted during the neonicotinoid reevaluation. | A -4° | D 4 | DPR Data | IIC EDA | Acceptable for | |--------------|-------------|--------------------|-----------|----------------| | Active | Report | Processing | U.S. EPA | use in Risk | | Ingredient | Number | Number | MRID No. | Evaluation | | | | Berries | | | | Clothianidin | VP-38992 | 52884-0282 | 50154305 | X | | Dinotefuran | 10934.4101 | 52911-0458 | 49841002 | X | | Dinotefuran | 10934.4107 | 52911-0486 | 50145707 | X | | Imidacloprid | EBNTL056-04 | 51950-0812 | 49090502 | | | Imidacloprid | EBNTY006 | 51950-0881 | 49511701 | | | Thiamethoxam | TK0177224 | 52691-0574 | 50265502 | X | | Thiamethoxam | TK0236307 | 52691-0536 | 49804102 | X | | Thiamethoxam | TK0250068 | 52691-0582 | 50266001 | X | | Thiamethoxam | TK0250072 | 52691-0586 | 50425901 | X | | | | Cereal Grains | | | | Clothianidin | VP-39071 | 52884-0278 | 50154301 | X | | Clothianidin | VP-39234 | 52884-0291 | 50312701 | X | | Clothianidin | VP-39240 | 52884-0315 | 49372102 | X | | Clothianidin | VP-39442 | 52884-0292 | 50312702 | X | | Imidacloprid | EBNTY009* | 51950-0871 | 49511701 | X | | Thiamethoxam | TK0258214 | 52691-0579 | 50265505 | X | | | | Citrus Fruit | | | | Clothianidin | VP-38685 | 52884-0247 | 49317901 | X | | Clothianidin | VP-38980 | 52884-0298 | 50478201 | X | | Clothianidin | VP-39259 | 52884-0273 | 49944702 | | | Imidacloprid | EBNTL056-07 | 51950-0798 | 49090504 | X | | Imidacloprid | EBNTY007 | 51950-0874 | 49521301 | X | | Thiamethoxam | TK0124743 | 52691-0546 | 49881001 | X | | Thiamethoxam | TK0124745 | 52691-0545 | 49881002 | X | | Thiamethoxam | TK0177221 | 52691-0571 | 50131102 | X | | Thiamethoxam | TK0250069 | 52691-0587 | 50425902 | X | | | | Cucurbit Vegetable | <u>es</u> | | | Clothianidin | VP-38263 | 52884-0245 | 49602801 | X | | Clothianidin | VP-38313 | 52884-0244 | 49602802 | X | | Clothianidin | VP-38938 | 52884-0263 | 49705901 | X | | Clothianidin | VP-38971 | 52884-0266 | 49910601 | X | | Clothianidin | VP-39242 | 52884-0283 | 50154306 | X | | Dinotefuran | 10934.4102 | 52911-0459 | 49841003 | | | Dinotefuran | 10934.4104 | 52911-0461 | 49852701 | X | | Dinotefuran | S16-01165 | 52911-0479 | 50145701 | | | Active
Ingredient | Report
Number | DPR Data
Processing
Number | U.S. EPA
MRID
No. | Acceptable for use in Risk Evaluation | |----------------------|--------------------------|----------------------------------|----------------------|---------------------------------------| | Dinotefuran | S16-02008 | 52911-0481 | 50145703 | X | | Dinotefuran | S16-02009 | 52911-0482 | 50145704 | | | Imidacloprid | EBNTL056-02 | 51950-0811 | 49090501 | | | Thiamethoxam | TK0024668 | 52691-0466 | 49550801 | X | | Thiamethoxam | TK0222530 | 52691-0576 | 50265501 | X | | Thiamethoxam | TK0222532 | 52691-0534 | 49804105 | X | | Thiamethoxam | TK0242074 | 52691-0580 | 50265506 | X | | | | Fruiting Vegetable | <u>es</u> | | | Dinotefuran | 10934.4103 | 52911-0460 | 49841004 | X | | Dinotefuran | S16-01167 | 52911-0480 | 50145702 | | | Imidacloprid | EBNTL056-05 | 51950-0786 | 49090503 | | | Imidacloprid | EBNTN012 | 51950-0918 | 49894502 | | | Thiamethoxam | TK0025811 | 52691-0455 | 50023201 | | | Thiamethoxam | TK0222531 | 52691-0533 | 49804101 | X | | Thiamethoxam | TK0236306 | 52691-0535 | 49804103 | X | | Thiamethoxam | TK0242072 | 52691-0581 | 50265507 | X | | | | Legume Vegetable | <u>es</u> | | | Clothianidin | EBTIP060*
SG-OT-18-03 | 52884-0302 | 49803701 | X | | Thiamethoxam | TK0222529* | 52691-0532 | 49804104 | X | | Thiamethoxam | TK0250070 | 52691-0577 | 50265503 | X | | | | <u>Oilseed</u> | | | | Clothianidin | VP-38259 | 52884-0251 | 49733302 | X | | Clothianidin | VP-39066
EBTIN115 | 52884-0264 | 49904901 | X | | Dinotefuran | 43411B104 | 52911-0490 | 50198501 | X | | Imidacloprid | EBNTL011 | 51950-0917 | 49894501 | X | | Imidacloprid | EBNTY010 | 51950-0872 | 49511702 | X | | Imidacloprid | EBNTL056-01 | 51950-0785 | 49103301 | X | | Thiamethoxam | TK0177223 | 52691-0590 | 49686801 | X | | | | Pome Fruits | | | | Clothianidin | VP-38552 | 52884-0281 | 50154304 | X | | Imidacloprid | EBNTN014 | 51950-0903 | 49662101 | X | | Thiamethoxam | TK0250071 | 52691-0578 | 50265504 | X | | | | t and Tuber Veget | | | | Clothianidin | VP-38985 | 52884-0262 | 49705902 | X | | Dinotefuran | 10934.4100 | 52911-0457 | 49841001 | X | | Active
Ingredient | Report
Number | DPR Data
Processing
Number | U.S. EPA
MRID No. | Acceptable for use in Risk Evaluation | |----------------------|------------------|----------------------------------|----------------------|---------------------------------------| | | | | | | | Clothianidin | VP-38563 | 52884-0280 | 50154303 | X | | Dinotefuran | 10934.4105 | 52911-0485 | 50145706 | X | | Dinotefuran | 10934.4109 | 52911-0491 | 50456901 | | | Imidacloprid | EBNTN013 | 51950-0904 | 49819401 | X | | Imidacloprid | EBNTY008 | 51950-0882 | 49535601 | X | | Thiamethoxam | TK0177222 | 52691-0531 | 50096606 | X | | | | | | | | Clothianidin | VP-38473 | 52884-0279 | 50154302 | X | ^{*}Report Number consists of seed-treatment trial only. While these are residue studies, they do not pertain to current draft regulations, which are focused on soil and foliar applications, only. #### Appendix 3. Additional Information on Acceptable Crop Residue Studies The following tables present the 90th percentile of pollen and nectar residue values for the acceptable residue trials used for risk evaluation. For estimation of exposure, the concentration chosen at a specified percentage of the sample is the value that represents the exposure value that would be compared to the no observed effects concentration (NOEC) value derived from colony feeding studies to characterize potential risk. The 90th percentile value was determined to be a point in the distribution where the value represented a realistic, yet protective approach to determining risk (Troiano et al. 2018). For imidacloprid, DPR evaluated risks to bees based on concentrations of total residues, which are the summation of residues of the parent imidacloprid and its bee-toxic metabolites, imidacloprid-olefin and imidacloprid-5-hydroxy. For thiamethoxam, DPR evaluated risks based on concentrations of total residues, which are the summation of the parent thiamethoxam and the clothianidin metabolite. For clothianidin and dinotefuran, the metabolites that formed were determined to be orders of magnitude less toxic to honey bees than the parent active ingredient clothianidin or dinotefuran, and thus DPR evaluated risk based on the parent residues alone. The boxes in the tables shaded grey indicate when 90th percentile residue values exceed the respective pollen or nectar NOEC value for that active ingredient. The final nectar NOECs that DPR used to evaluate risk are 23, 34 19, and 71 micrograms of active ingredient per kilogram of feed (µg ai/kg feed) for imidacloprid, thiamethoxam, clothianidin, and dinotefuran, respectively. The final pollen NOEC that DPR used was 372 µg ai/kg feed for all four neonicotinoids. Table 1. 90th Percentiles of Acceptable Residue Studies for the Berries and Small Fruits Crop Groups | Active | Appli- | Application | Report
Number | Cuan Cuarreth Stage | Necta | entile | Pollen 90 th | Percentile | |--------------|------------------|----------------------------|-------------------------|---|----------------------------|---------------------------|----------------------------|---------------------------| | Ingredient | cation
Method | Rate (lbs.
ai/A/season) | and Crop
Type | Crop Growth Stage at Application | Parent
Residue
ug/kg | Total
Residue
ug/kg | Parent
Residue
ug/kg | Total
Residue
ug/kg | | Clothianidin | Soil | 0.2 | VP-38992
Grape | Sprouting/bud
development
(pre-bloom) | N/A | N/A | 157 | 174 | | Thiamethoxam | Soil | 0.129 | TK0250068
Strawberry | Sprouting/bud
development
(at transplant) | 134 | 145 | 252 | 340 | | 1 mametnoxam | 5011 | 0.188 | TK0250068
Strawberry | Sprouting/bud
development
(at transplant) | 45 | 45.2 | 807 | 848 | | Clothianidin | F-1: | 0.1 | VP-38992 | Development of fruit (post-bloom) | N/A | N/A | 16.7 | 17.3 | | Cioinianidin | Foliar | 0.1 | Grape | Leaf development (pre-bloom) | N/A | N/A | 1230 | 1489 | | Dinot-france | Follow | 0.26 | 10934.4107
Blueberry | Two applications at inflorescence emergence to flowering (pre-bloom to bloom) | 471 | 501 | 469 | 1157 | | Dinotefuran | Foliar | 0.36 | 10934.4101
Cranberry | Two applications at inflorescence emergence to flowering (pre-bloom to bloom) | 781 | 813 | 764 | 1314 | Table 1 (Continued). 90th Percentiles of Acceptable Residue Studies for the Berries and Small Fruits Crop Groups | Active | Appli- | Application | Report Number Crop Growth Stage | | Nectar 90 th
Percentile | | Pollen 90 th Percentile | | |--------------|------------------|-------------------------|---------------------------------|---|---------------------------------------|---------------------------|------------------------------------|---------------------------| | Ingredient | cation
Method | Rate (lbs. ai/A/season) | and Crop
Type | at Application | Parent
Residue
ug/kg | Total
Residue
ug/kg | Parent
Residue
ug/kg | Total
Residue
ug/kg | | | | 0.063 | TK0250072
Blueberry | Sprouting/bud
development to
inflorescence
emergence
(pre-bloom) | 9.4 | 61.9 | 144 | 151 | | Thiamethoxam | Foliar | 0.188 | TK0250072
Blueberry | Three applications at sprouting/bud development to inflorescence emergence (pre-bloom) | 267 | 613 | 757 | 836 | | | | | TK0236307
Cranberry | Three applications at inflorescence emergence to flowering (pre-bloom to bloom) | 835 | 922 | 1150 | 1226 | | | | 0.189 | TK0177224
Strawberry | Three applications at inflorescence emergence to maturity of fruit (pre-bloom to bloom) | 296 | 301 | 7349 | 7411 | N/A = Not applicable. Grape flowers do not produce nectar. Table 2. 90th Percentiles of Acceptable Residue Studies for the Cereal Grains Crop Groups | | Appli- | | Report | Crop | Nectar 90 ^{tl} | ^h Percentile | Pollen 90th | Percentile | |----------------------|-------------------------|-------------------------------------|----------------------------|-----------------------------|----------------------------|---------------------------|----------------------------|---------------------------| | Active
Ingredient | cation
Method* | Application Rate (lbs. ai/A/season) | Number
and Crop
Type | Growth Stage at Application | Parent
Residue
ug/kg | Total
Residue
ug/kg | Parent
Residue
ug/kg | Total
Residue
ug/kg | | | | 0.16 | VP-39234
Corn | At seed planting | N/A | N/A | 37.7 | 42.3 | | | Soil | 0.2 | VP-39240
Corn | At seed planting | N/A | N/A | 5.3 | 6.1 | | | | | VP-39442
Corn | At seed planting | N/A | N/A | 25.9 | 33.4 | | | | 0.16 (soil) | VP-39234
Corn | At seed planting | N/A | N/A | 5.1 | 6.4 | | | Soil and seed | 0.25 mg ai/seed | VP-39071
Corn | At seed planting | N/A | N/A | 5.2 | 6.1 | | Clothianidin | | | VP-39234
Corn | At seed planting | N/A | N/A | 20.2 | 24.5 | | | treatment | 0.16 (soil)
0.5 mg ai/seed | VP-39071
Corn | At seed planting | N/A | N/A | 6.2 | 8.2 | | | | | VP-39442
Corn | At seed planting | N/A | N/A | 18.2 | 20.9 | | | | 0.16 (soil)
1.25 mg ai/seed | VP-39071
Corn | At seed planting | N/A | N/A | 2.3 | 2.6 | | | Soil and seed treatment | 0.18 (soil)
0.25 mg ai/seed | VP-39240
Corn | At seed planting | N/A | N/A | 0.4 | 4.8 | Table 2 (Continued). 90th Percentiles of Acceptable Residue Studies for the Cereal Grains Crop Groups | Active | Appli- | Application Rate (lbs. ai/A/season) | Report
Number | Crop
Growth | Nectar 90 th | Percentile | Pollen 90 th | Percentile | |-------------------|-------------------|-------------------------------------|-------------------|--|----------------------------|---------------------------|----------------------------|---------------------------| |
Ingredient | cation
Method | | and Crop
Type | Stage at
Application | Parent
Residue
ug/kg | Total
Residue
ug/kg | Parent
Residue
ug/kg | Total
Residue
ug/kg | | | | 0.086 (foliar) | TK0258214 | Two foliar applications at vegetative stages | N/A | N/A | 5.5 | 14.8 | | This was the same | Foliar and | 1.25 g ai/seed | Corn | Two foliar applications at reproductive stages | N/A | N/A | 528 | 539 | | Thiamethoxam | seed
treatment | 0.126 (foliar) | TV0259214 | Two foliar applications at vegetative stages | N/A | N/A | 6 | 15.1 | | | | 0.126 (foliar)
1.25 g ai/seed | TK0258214
Corn | Two foliar applications at reproductive stages | N/A | N/A | 559 | 566 | ^{*} In certain trials, soil or foliar application was made in addition to planting treated seed as noted in table. N/A = Not applicable. Corn does not produce nectar. Table 3. 90th Percentiles of Acceptable Residue Studies for the Citrus Fruit Crop Groups | Active | Appli- | Application | Report | Days After Last
Application | | ar 90 th
entile | Pollen 90th | Percentile | |--------------|------------------|-------------------------|-------------------------|---|----------------------------|-------------------------------|----------------------------|---------------------------| | Ingredient | cation
Method | Rate (lbs. ai/A/season) | Number and
Crop Type | (DALA) for
Sample
Collection ¹ | Parent
Residue
ug/kg | Total
Residue
ug/kg | Parent
Residue
ug/kg | Total
Residue
ug/kg | | | | | | 47 | 6.8 | 7.51 | N/C | N/C | | | | | | 75 | 4.3 | 4.77 | N/C | N/C | | | | | | 21 | 11.9 | 12.9 | N/C | N/C | | | | | | 18 | 0.4 | 0.4 | N/C | N/C | | | | | | 46 | 7.0 | 7.66 | N/C | N/C | | | | | VP-38685
Orange | 77 | 8.0 | 8.89 | N/C | N/C | | | | | Orange | 112 | 9.3 | 10.48 | N/C | N/C | | | | | | 116 | 5.0 | 5.63 | N/C | N/C | | Clothianidin | Soil | 0.2 | | 144 | 4.7 | 5.26 | N/C | N/C | | Cionnamani | 3011 | 0.2 | | 146 | 8.5 | 10.2 | N/C | N/C | | | | | | 174 | 3.1 | 3.62 | N/C | N/C | | | | | | 58 | 39.4 | 44.3 | 246* | 322.9* | | | | | | 181 | 2.31 | 2.72 | 3.94* | 4.76* | | | | | VP-38980 | 223 | 2.66 | 3.06 | 5.65* | 6.64* | | | | | Orange, | 186 | 10.8 | 12.0 | 29.3* | 34.7* | | | | | Lemon | 164 | 23.0 | 25.0 | 76.9* | 88.6* | | | | | | 88 | 9.98 | 11.1 | 25.0* | 30.3* | | | | | 121 | 16.4 | 18.4 | 24.0* | 27.8* | | Table 3 (Continued). 90th Percentiles of Acceptable Residue Studies for the Citrus Fruit Crop Groups | Antivo | Appli- | Application
Rate (lbs.
ai/A/season) | Report | Days After Last
Application | | ar 90 th
entile | Pollen 90th | Percentile | |----------------------|------------------|---|-------------------------|---|----------------------------|-------------------------------|----------------------------|---------------------------| | Active
Ingredient | cation
Method | | Number and
Crop Type | (DALA) for
Sample
Collection ¹ | Parent
Residue
ug/kg | Total
Residue
ug/kg | Parent
Residue
ug/kg | Total
Residue
ug/kg | | Imidaalanrid | Soil | 0.25 | EBTNL056-7
Orange | 101 | 6.06 | 8.73 | N/C | N/C | | Imidacloprid Soil | 3011 | 0.5 | EBTNL056-7
Orange | 198 | 16.43 | 24.59 | N/C | N/C | | | | | | 91 | 1.55 | 2.49 | N/C | N/C | | | | 0.086 | TK0124743
Orange | 51 | 1.25 | 1.75 | N/C | N/C | | | | | | 46 | 2.26 | 3.176 | N/C | N/C | | | | | | 126 | 1.21 | 1.868 | N/C | N/C | | | | | | 44 | 9.28 | 11.13 | 20.5 | 32.3 | | Thiamethoxam | Soil | 0.080 | | 57, 58 | 4.78 | 6.17 | 18.3 | 34.8 | | Imamemoxam | Soli | | TK0124745 | 78 | 0.99 | 0.99 | 1.69 | 5.37 | | | | | Orange | 38 | 1.64 | 2.2 | 3.57 | 6.74 | | | | | | 129 | 0.7 | 1.37 | 8.08 | 18.59 | | | | | | 84 | 1.42 | 2.01 | 5.08 | 27.9 | | | | 0.120 | TK0124745 | 71 | 3.85 | 5.11 | 89 | 100.6 | | | 0.129 | Orange | 84, 85 | 4.7 | 6.28 | 11.2 | 21.5 | | Table 3 (Continued). 90th Percentiles of Acceptable Residue Studies for the Citrus Fruit Crop Groups | Active | Appli- | Application | Report | Days After Last Application | Necta | ar 90 th
entile | Pollen 90th | Percentile | |--------------|------------------|----------------------------|------------------------------------|---|----------------------------|-------------------------------|----------------------------|---------------------------| | Ingredient | cation
Method | Rate (lbs.
ai/A/season) | Number and
Crop Type | (DALA) for
Sample
Collection ¹ | Parent
Residue
ug/kg | Total
Residue
ug/kg | Parent
Residue
ug/kg | Total
Residue
ug/kg | | | | | | 53 | 5.04 | 6.25 | 8.49 | 32.43 | | | | | EX.010.45.45 | 75 | 5.85 | 7.36 | 19.7 | 43.38 | | | | 0.172 | TK0124745
Orange | 38 | 5.15 | 6.17 | 15.02 | 20.11 | | | | | Orange | 128 | 4.57 | 6.2 | 17.02 | 47.34 | | | | | | 81 | 3.95 | 5.47 | 20.02 | 44.97 | | | | | | 45 | <lod<sup>2</lod<sup> | <lod<sup>3</lod<sup> | 2.64 | 3.78 | | | | | TK0177221 | 49 | 5.85 | 7.23 | 51.8 | 51.8 | | | | | Orange,
Lemon TK0124743 Orange | 59 | 16.9 | 21.59 | 67.2 | 107.8 | | | | | | 35 | <lod<sup>2</lod<sup> | <lod<sup>3</lod<sup> | 1.25 | 7.78 | | Thiamethoxam | Soil | | | 91 | 1.97 | 2.47 | N/C | N/C | | | | | | 51 | 6.91 | 7.463 | N/C | N/C | | | | | | 46 | 1.63 | 2.13 | N/C | N/C | | | | | | 126 | 2.0 | 2.895 | N/C | N/C | | | | | | 83, 59 | 16.71 | 18.65 | 210.41 | 291.59 | | | | | | 91, 93 | 27.15 | 31.83 | 67.68 | 117.46 | | | | 0.256 | TK0124743 | 41, 38 | 21.96 | 24.52 | 235.31 | 329.85 | | | | 0.256 | Orange | 60, 59 | 38.1 | 46.99 | 322.48 | 577.06 | | | | | | 105, 104 | 15.38 | 18.04 | 285.94 | 362.04 | | | | | | 109, 111 | 24.93 | 31.9 | 159.38 | 317.42 | Table 3 (Continued). 90th Percentiles of Acceptable Residue Studies for the Citrus Fruit Crop Groups | Active | Appli- | Application | Report | Days After Last
Application | | ar 90 th
entile | Pollen 90th | Percentile | |--------------|------------------|----------------------------|-------------------------|---|----------------------------|-------------------------------|----------------------------|---------------------------| | Ingredient | cation
Method | Rate (lbs.
ai/A/season) | Number and
Crop Type | (DALA) for
Sample
Collection ¹ | Parent
Residue
ug/kg | Total
Residue
ug/kg | Parent
Residue
ug/kg | Total
Residue
ug/kg | | | | | | 45 | 15.4 | 18.53 | 28.9 | 49 | | | | 0.257 | | 60, 61 | 13 | 15.28 | 20 | 36.3 | | | | | TK0124745 | 36 | 4.02 | 4.93 | 38.35 | 41.58 | | | | 0.257 | Orange | 118 | 12.51 | 18.36 | 48.18 | 53.84 | | | Soil | | | 72 | 16.3 | 21.39 | 36.1 | 69.7 | | | | | | 87, 88 | 6.14 | 8.09 | 30 | 60.1 | | | | 0.556 | TK0124745
Orange | 47 | 17.3 | 20.47 | 53.1 | 91 | | Thiamethoxam | | | | 62, 63 | 30.6 | 36.07 | 91 | 152.6 | | Imamemoxam | | | | 36 | 16.24 | 32.48 | 50.36 | 60.94 | | | | | | 119 | 24.11 | 31.15 | 80.39 | 163.68 | | | | | | 74 | 27.3 | 33.3 | 93.6 | 161.5 | | | | | | 89, 90 | 20 | 25.46 | 52.1 | 125.38 | | | | | | 91 | 16.7 | 20.06 | N/C | N/C | | | | 0.550 | TK0124743 | 51 | 18.8 | 22.33 | N/C | N/C | | | | 0.558 | Orange | 46 | 6.51 | 7.53 | N/C | N/C | | | | | | 126 | 13.8 | 16.39 | N/C | N/C | | Imidacloprid | Foliar | 0.5 | EBNTY007
Orange | 44 | 243 | 267.1 | 2846 | 3257.9 | Table 3 (Continued). 90th Percentiles of Acceptable Residue Studies for the Citrus Fruit Crop Groups | Activo | Appli- Application | | Report | Days After Last
Application | | Nectar 90 th
Percentile | | Pollen 90 th Percentile | | |----------------------|--------------------|----------------------------|-------------------------|---|----------------------------|---------------------------------------|-----------------------------|------------------------------------|--| | Active
Ingredient | cation
Method | Rate (lbs.
ai/A/season) | Number and
Crop Type | (DALA) for
Sample
Collection ¹ | Parent
Residue
ug/kg | Total
Residue
ug/kg | Parent
Residue ug
/kg | Total
Residue
ug/kg | | | | | 0.086 | TK0250069
Orange | 53 | 3.3 | 4.8 | 248 | 484 | | | Thiamethoxam | Foliar | 0.172 | TK0250069 | 117 | 0.6 | 1.3 | 91.2 | 97.4 | | | | | 0.172 | Orange | 53 | 4.8 | 7.4 | 276 | 565 | | N/C = Not collected. Residue samples were not collected for pollen. ^{*} Residues in anthers used as surrogate for pollen. ¹ A single value in this column represents the sample timing for both pollen and nectar samples. Values separated by commas represent the sample timing for nectar and pollen, respectively. $^{^{2}}$ The nectar Limit of Detection (LOD) for this study was 0.5 μ g/kg. $^{^{3}}$ The pollen LOD for this study was 1 µg/kg. Table 4. 90th Percentiles of Acceptable Residue Studies for the Cucurbit Vegetables Crop Groups | Active | Appli- | Application | Report
Number | Cuan Cuawth Stage at | Necta
Perce | r 90 th
entile | Pollen 90th | Percentile | |--------------|------------------|----------------------------|---|---|----------------------------|------------------------------|----------------------------|---------------------------| | Ingredient | cation
Method | Rate (lbs.
ai/A/season) | and Crop
Type | Crop Growth Stage at Application | Parent
Residue
ug/kg | Total
Residue
ug/kg | Parent
Residue
ug/kg | Total
Residue
ug/kg | | | | | VP-38263 | Germination (at seed planting) | 4.5 | 5 | 10.6 | 12.3 | | | | | Pumpkin | Formation of side shoots (pre-bloom) | 15.9 | 18.9 | 37.6 | 42.3 | | Clothianidin | Soil | 0.2 | VP-38938
Cucumber,
Melon,
Pumpkin,
Squash | Germination (at seed planting) | 10.7 | 11.8 | 15.6 | 18.9 |
 | | | VP-38971 | Germination (at seed planting) | 5.1 | 6 | 8.7 | 10.2 | | | | | Pumpkin | Leaf development (pre-bloom) | 9.9 | 11.3 | 20.3 | 22.9 | | | | | VP-39242
Melon | Germination (at seed planting) | 35.7 | 41 | 33.7 | 39.2 | | Dinotefuran | Soil | 0.536 | 10934.4104
Pumpkin | Two applications at inflorescence emergence to flowering (pre-bloom to bloom) | 39 | 50.5 | 88.3 | 145 | Table 4 (Continued). 90th Percentiles of Acceptable Residue Studies for the Cucurbit Vegetables Crop Groups | A | Appli- | Application
Rate (lbs.
ai/A/season) | Report | | Nectar 90 ^t | h Percentile | Pollen 90th Percentile | | | |----------------------|------------------|---|---|---|----------------------------|---------------------------|----------------------------|---------------------------|--| | Active
Ingredient | cation
Method | | Number
and Crop
Type | Crop Growth Stage at Application | Parent
Residue
ug/kg | Total
Residue
ug/kg | Parent
Residue
ug/kg | Total
Residue
ug/kg | | | | | 0.125 | TK0222530
Pumpkin | Leaf development (pre-bloom) | 4.8 | 5.9 | 5.2 | 8 | | | Thiamethoxam | Soil | 0.172 | TK0222530
Pumpkin,
Squash,
Melon | Leaf development (pre-bloom) | 21.4 | 23.6 | 10.6 | 19.7 | | | | | | TK0024668
Cucumber | Germination (at seed planting) | 11.4 | 13.2 | 8.2 | 10.8 | | | Clothianidin | Foliar | 0.2 | VP-38313
Pumpkin | Two applications at flowering (at bloom) | 5 | 8.1 | 71 | 80 | | | Clounamum | Pollar | 0.1 | VP-38971
Pumpkin | Leaf development (pre-bloom) | 0.3 | 0.5 | 1.4 | 1.7 | | | Dinotefuran | Foliar | 0.268 | S16-02008
Pumpkin | Two applications at inflorescence emergence to flowering (pre-bloom to bloom) | N/C | N/C | 532.9 | 568.4 | | | | | 0.046 | TK0242074
Pumpkin | Two applications at flowering (at bloom) | 1.7 | 9.7 | 4.8 | 7.2 | | | Thiamethoxam | Foliar | 0.172 | TK0222532
Cucumber | Two applications at formation of side shoots to inflorescence emergence (pre-bloom) | 263 | 289 | 1050 | 1080 | | | | | | TK0242074
Pumpkin | Two applications at flowering (at bloom) | 8.6 | 15 | 14.7 | 18 | | N/C = Not collected. Residue samples were not collected for nectar. Table 5. 90th Percentiles of Acceptable Residue Studies for the Fruiting Vegetables Crop Groups | | Appli- | Application | Report | Crop Growth | Nectar 90th | Percentile | Pollen 90th | Percentile | |----------------------|------------------|----------------------------|-------------------------|--|----------------------------|---------------------------|----------------------------|---------------------------| | Active
Ingredient | cation
Method | Rate (lbs.
ai/A/season) | Number and
Crop Type | Stage at Application | Parent
Residue
ug/kg | Total
Residue
ug/kg | Parent
Residue
ug/kg | Total
Residue
ug/kg | | | | 0.125 | TK0242072
Tomato | Leaf development (pre-bloom) | N/A | N/A | 75.3 | 191 | | Thiamethoxam | Soil | | TK0242072
Tomato | Leaf development (pre-bloom) | N/A | N/A | 67 | 157 | | | | 0.172 | TK0236306
Pepper | Leaf development
to formation of side
shoots (pre-bloom) | 67 | 181 | 46 | 260 | | Dinotefuran | Soil | 0.536 | 10934.4103
Tomato | Two applications at formation of side shoots to flowering (pre-bloom to bloom) | N/A | N/A | 9813 | 24467 | | Thiamethoxam | Foliar | 0.172 | TK0222531
Tomato | Inflorescence
emergence to
flowering (pre-
bloom to bloom) | N/A | N/A | 6116 | 6520 | | Dinotefuran | Foliar | 0.268 | 10934.4103
Tomato | Two applications at flowering to development of fruit (during bloom) | N/A | N/A | 22839 | 60320 | N/A = Not applicable. Tomato flowers do not produce nectar. Table 6. 90th Percentiles of Acceptable Residue Studies for the Legume Vegetables Crop Groups | | Applicatio
n Method | Application
Rate (lbs.
ai/A/season) | Report
Number
and Crop
Type | Crop Growth | Nectar 90th Percentile | | Pollen 90th Percentile | | |--------------|------------------------|---|--------------------------------------|---|-----------------------------|---------------------------|----------------------------|---------------------------| | | | | | Stage at
Application | Parent
Residue
ug /kg | Total
Residue
ug/kg | Parent
Residue
ug/kg | Total
Residue
ug/kg | | Thiamethoxam | Foliar | 0.126 | TK0250070
Soybean | Two applications
at leaf
development to
flowering (pre-
bloom to bloom) | 1.3^ | 4.7^ | 34* | 41* | ^{*} Residues in anthers used as surrogate for pollen. [^] Residues sampled from honey stomachs used as a surrogate for nectar. A conversion factor was employed to convert nectar values generated from bee honey stomachs to the equivalent flower collected nectar (Tafarella, et al. 2021). Table 7. 90th Percentiles of Acceptable Residue Studies for the Oilseed Crop Group | Active | Appli-
cation | Application Rate (lbs. ai/ A/season) | Report
Number
and Crop
Type | Crop Growth
Stage at | Nectar 90 th
Percentile | | Pollen 90 th
Percentile | | Extrafloral
Nectar 90 th
Percentile | | |-------------------------------|--|--------------------------------------|---|---|---------------------------------------|---------------------------|---------------------------------------|---------------------------|--|---------------------------| | Ingredient | Method* | | | Application | Parent
Residue
ug/kg | Total
Residue
ug/kg | Parent
Residue
ug/kg | Total
Residue
ug/kg | Parent
Residue
ug/kg | Total
Residue
ug/kg | | Clothianidin (fol 0.35: ai/s) | 0.083
(foliar)
0.353 mg
ai/seed | VP-39066/
EBTIN115
Cotton | Inflorescence
emergence to
Beginning of
Flowering (pre-
bloom to bloom) | 4 | 24.1 | 184 | 329 | 450 | 696 | | | | E-U-v | 0.2 | VP-38259
Cotton | Two applications at
Inflorescence
emergence to
Flowering (pre-
bloom to bloom) | 79.4 | 128 | 246 | 308 | 2083 | 2341 | | | Foliar | 0.083 | VP-39066/
EBTIN115
Cotton | Inflorescence emergence to Beginning of Flowering (pre- bloom to bloom) | 4.8 | 32.7 | 163 | 283 | 2315 | 2629 | | Dinotefuran | Foliar | 0.27 | 43411B104
Cotton | Two applications at Inflorescence Emergence to Beginning of Flowering (pre- bloom to bloom) | 263 | 318 | 6521 | 11235 | 1920 | 2846 | Table 7 (Continued). 90th Percentiles of Acceptable Residue Studies for the Oilseed Crop Group | Active | Appli-
cation | Application Rate (lbs. ai/A/ season) | Report
Number
and Crop
Type | Crop Growth | Nect | Nectar 90 th
Percentile | | n 90 th
entile | Extra:
Necta
Perce | r 90 th | |--------------|---------------------------------|--|--------------------------------------|--|----------------------------|---------------------------------------|----------------------------|------------------------------|----------------------------|---------------------------| | Ingredient | Method* | | | Stage at Application | Parent
Residue
ug/kg | Total
Residue
ug/kg | Parent
Residue
ug/kg | Total
Residue
ug/kg | Parent
Residue
ug/kg | Total
Residue
ug/kg | | | Soil | 0.329 | EBNTN011
Cotton | At planting | 47 | 50 | 15 | 16 | 18 | 19 | | | Soil and foliar | 0.171 | EBNTN011 Cotton | Soil application at planting. Three foliar applications at flowering (during bloom) | 129 ¹ | 135 ¹ | 4011 | 4091 | 1427 ¹ | 1470 ¹ | | Imidacloprid | | | | Soil application at planting. Three foliar applications at flowering (prebloom to bloom) | 66 ² | 70^{2} | 160 ² | 166 ² | 86 ² | 912 | | | Foliar
and seed
treatment | 0.3
(foliar)
/0.375
mg
ai/seed | EBNTY010
Cotton | Five applications from leaf development to beginning of flowering (pre- bloom to bloom) | 17.4 | 18.4 | 6.2 | 6.6 | 12.1 | 13.3 | | | Foliar | 0.063 | EBNTL056
Cotton | Flowering (during bloom) | 52.2 | 55.6 | N/C | N/C | N/C | N/C | Table 7 (Continued). 90th Percentiles of Acceptable Residue Studies for the Oilseed Crop Group | Active | Appli-
cation | Appli-
cation
Rate | Report
Number | Crop Growth Stage | Nectar 90 th
Percentile | | Pollen 90 th
Percentile | | Extrafloral
Nectar 90 th
Percentile | | |--------------|------------------|--------------------------|---------------------|---|---------------------------------------|------------------|---------------------------------------|------------------|--|------------------| | Ingredient | Method
* | (lbs.
ai/A/ | and Crop
Type | at Application | Parent
Residue | Total
Residue | Parent
Residue | Total
Residue | Parent
Residue | Total
Residue | | | | season) | 0.1 | | ug /kg | ug/kg | ug/kg | ug/kg | ug/kg | ug/kg | | Thiamethoxam | Foliar | 0.126 | TK0177223
Cotton | Two applications at inflorescence emergence (pre-bloom) | 5.9 | 6.4 | 96.4 | 102.5 | 178 | 186.4 | ^{*} In certain trials, soil or foliar applications were made to crops grown from seeds treated with one of the AIs. ¹ Sample residues 4-5 days after last foliar application. ² Sample residues 10-14 days after last foliar application. N/C = Not collected. Residue
samples were not collected for pollen or extrafloral nectar. Table 8. 90th Percentiles of Acceptable Residue Studies for the **Pome Fruits** Crop Groups | | Appli- | Application | Report | Crop Growth | Nectar 90th | Percentile | Pollen 90th Percentile | | |----------------------|--------------------|------------------------------|-------------------------|---|----------------------------|---------------------------|----------------------------|---------------------------| | Active
Ingredient | cation
Method | Rate (lbs. ai/A/season) | Number and
Crop Type | Stage at Application | Parent
Residue
ug/kg | Total
Residue
ug/kg | Parent
Residue
ug/kg | Total
Residue
ug/kg | | Clothianidin | Foliar | 0.187 | VP-38552
Apple | Maturity of fruit
and seed
(post-bloom, pre-
harvest) | 0.6 | 0.8 | 31.1 | 31.6 | | Imidacloprid | Soil and
Foliar | 0.38 (soil)
0.12 (foliar) | EBNTN014
Apple | Soil application at development of fruit to senescence; Two foliar applications at flowering to senescence | 1.2 | 3.45 | 45.9 | 58.5 | | Thiamethoxam | Foliar | 0.086 | TK0250071
Apple | Inflorescence
emergence
(pre-bloom) | 216 | 225 | 1880 | 1955 | Table 9. 90th Percentiles of Acceptable Residue Studies for the Root and Tuber Vegetables Crop Groups | | | Application
Rate (lbs.
ai/A/season) | Report | Crop | Nectar 90th | Percentile | Pollen 90th Percentile | | | |----------------------|-----------------------|---|----------------------------|---|-----------------------------|---------------------------|----------------------------|---------------------------|--| | Active
Ingredient | Application
Method | | Number
and Crop
Type | Growth Stage at Application | Parent
Residue ug
/kg | Total
Residue
ug/kg | Parent
Residue
ug/kg | Total
Residue
ug/kg | | | Clothianidin | Soil | 0.2 | VP-38985
Potato | At planting | N/A | N/A | 113.9 | 213.4 | | | Dinotefuran | Soil | 0.338 | 10934.4100
Potato | Emergence
to main stem
elongation
(pre-bloom) | N/A | N/A | 56.9* | 134.9* | | | Clothianidin | Foliar | 0.05 | VP-38985
Potato | Main stem
elongation to
inflorescence
emergence
(pre-bloom) | N/A | N/A | 36.2 | 76.8 | | * Residues in anthers used as surrogate for pollen. N/A = Not applicable. Potato flowers do not produce nectar. Table 10. 90th Percentiles of Acceptable Residue Studies for the Stone Fruit Crop Groups | Active | Appli- | Application | Report
Number | Cuan Cuawth Stage at | | r 90 th
entile | | n 90 th
entile | |--------------|------------------|------------------------------|--|---|----------------------------|------------------------------|----------------------------|------------------------------| | Ingredient | cation
Method | Rate (lbs.
ai/A/season) | and Crop
Type | Crop Growth Stage at
Application | Parent
Residue
ug/kg | Total
Residue
ug/kg | Parent
Residue
ug/kg | Total
Residue
ug/kg | | | Soil and | 0.38 (soil) | EBNTN013
Cherry, | One soil and two foliar applications at senescence (post-bloom, post-harvest) | 5.9 | 32 | 127.7 | 133.4 | | Imidacloprid | Foliar | 0.38 (soil)
0.12 (foliar) | plum,
apricot,
peach | One soil and two foliar at development of fruit to maturity of fruit and seed (post-bloom, pre-harvest) | 5.9 | 7.4 | 122.1 | 139 | | Clothianidin | Foliar | 0.2 | VP-38563
Peach | Two applications at development of fruit to maturity of fruit and seed (post-bloom, pre-harvest) | 0.3 | 0.9 | 10 | 12.3 | | Dinotefuran | Foliar | 0.54 | 10934.4105
Cherry | Two applications at senescence (post-bloom, post-harvest) | 12.5 | 28.5 | 130.5 | 167.1 | | | | | EBNTY008 | Five applications at senescence (post-bloom, post-harvest) | 3.7 | 6.4 | 387.1 | 418.2 | | Imidacloprid | Foliar | 0.5 | Cherry | Five applications at development of fruit to maturity of fruit and seed (post-bloom, pre-harvest) | 1.1 | 2.05 | 48.4 | 52.3 | | Thiamethoxam | Foliar | 0.172 | TK0177222
Peach,
plum,
cherry | Two applications post-bloom, pre-harvest | 1.5 | 1.6 | 51.6 | 51.8 | Table 11. 90th Percentiles of Acceptable Residue Studies for the Tree Nuts Crop Groups | Active
Ingredient | Application
Method | Application
Rate (lbs.
ai/A/season) | Report | | Nectar 90th Percentile | | Pollen 90th Percentile | | |----------------------|-----------------------|---|----------------------------|--|----------------------------|---------------------------|----------------------------|---------------------------| | | | | Number
and Crop
Type | Crop Growth Stage at Application | Parent
Residue
ug/kg | Total
Residue
ug/kg | Parent
Residue
ug/kg | Total
Residue
ug/kg | | Clothianidin | Foliar | 0.2 | VP-38473
Almond | First application at Development of fruit; Second application at Maturity of fruit and seed to Senescence (Post-bloom) | 0.8 | 1 | 12.7 | 17 | ### References - 1. Troiano, J., Tafarella, B., Kolosovich, A., Cameron, R., Alder, D., Darling, R. (2018). "California Neonicotinoid Risk Determination." Environmental Monitoring and Pesticide Registration Branches, DPR. July 2018. - 2. Tafarella, B., Clendenin, B. (2022). "Response to the External Scientific Peer Review Comments on DPR's Neonicotinoid Risk Determination." Pesticide Evaluation Branch and Pesticide Registration Branch, California Department of Pesticide Regulation. Memorandum dated February 1, 2022.